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q-difference intertwining operators for U& (n )): general 
setting and the case n = 3 

V K Dobrevt 
h o l d  Sommerfeld Institute for Mahematical Physics, Technical University Clausthal. 
Leibni-se IO. 38678 Clausthal-Zellerfeld, Germany 

Received 31 J a n u q  1994, in final form 7 lune 1994 

Abstract. We coNrmct representations rii of the quantum algebra U,(sl(n)) labelled by n - I 
mmplex numbers ri and acting in the space of formal power series of n(n- 1)/2 non-commuting 
variables. These variables generate a flag manifold of Ule matrix quantum group SL,(n) 
which is dual Lo Uq(d(n)) .  The conditions for reducibility of and the procedure for the 
collshuction of the q-difference intertwining operators are given. The representations and q- 
difference intemining operators are given in the most explicit form for n = 3. 

1. Introdoftion 

Invariant differential equations Zf = 0 play a very important role in the description of 
physical symmetries-mall, e.g. the examples of Drac and Maxwell's equations (for more 
examples cf e.g. [l]). It is an important and yet unsolved problem to find such equations for 
the setting of quantum groups, where they are expected as q-difference equations, especially 
in the case of non-commuting variables. 

The approach to this problem used here relies on the following. In the classical situation 
the invariant differential operators Z giving the equations above may be described as 
operators intertwining representations of complex and real semisimple Lie groups [2-5]. 
There are many ways to find such operators (cf e.g. [ 11); however, most of these rely on 
constructions which are not available for quantum groups. Here we shall apply a procedure 
[5] which is rather algebraic and can be generalized almost straightfonvardly to quantum 
groups. According to this procedure, one first needs to know these constructions for the 
complex semisimple Lie groups since the consideration of a real semisimple Lie group 
involves also its complexification. That is why we start here with the case of U,(sJ(n)) 
(we write sI(n) instead of d ( n ,  C)). For the procedure one needs q-difference realizations 
of the representations in terms of functions of non-commuting variables. Until now such 
a realization of the representations and of the intertwining operators was found only for 
a Lorentz quantum algebra (dual to the m a ~ x  Lorentz quantum group of 161 in [7]. The 
construction in [7] (also applying the procedure of [5]) involves two q-commuting variables 
qij  = qijq and uses the complexification Uq(sI(2)) 0 Uq(sJ(2)) of the Lorentz quantum 
algebra. 

In the present paper, following the above-mentioned procedure, we construct 
representations I?? of Uq(si(n)) labelled by n - 1 complex numbers f = ( r , ,  . . . , rn-l}  
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and acting in the spaces of formal power series of n(n - 1)/2 non-commuting (for n > 2) 
variables Yij ,  1 < j < i < n. These variables generate a flag manifold of the matrix 
quantum group SLq(n),  which is dual to U,(sl(n)). For generic rl E C the representations 
?i are irreducible. We give the values of rt when the representations b are reducible. It is 
in the latter cases that there arise various partial equivalences among these representations. 
These partial equivalences are realized by q-difference intertwining operators for which we 
give a canonical derivation following 1.51. For q = 1 these operators become the invariant 
differential operators mentioned above. We should also note that our considerations below 
are in general fpr n 2 2, though the case n = 2, while being done first as a toy model [SI, 
is not interesting from the non-commutative point of view since it involves functions of one 
variable; furthermore, the representations and the only possible q-difference intertwining 
operator are known for U,(sl(2)) (though derived by a different method) [9]. 

The paper is organized as follows. In section 2 we recall the matrix quantum group 
GLq(n) and its dual quantum algebra U,. In section 3 we give the explicit construction of 
representations of U, and its semisimple part U,(sl(n)). In section 4 we give the reducibility 
conditions for these representations and the procedure for the construction of the q-difference 
intertwining operators. In section 5 we consider the case n = 3 in more detail. 

2. The matrix quantum group 

Let us consider an n x n quantum matrix M with non-commuting matrix elements aij, 
1 < i, j < n. The matrix quantum group dg = GL,(n), q E C, is generated by the matrix 
elements aij with the following commutation relations [lo] (h  = q - Q-I) :  

for j < e ( la )  a..a. - - I  . . .  - a,ta,, 

ay = q-'ax.a.. I ' I  for i < k (1b) 
aicakj = ak,ait for i < k ,  j < .! (IC) 

auaij - aijakc = haitax, for i < k ,  j < L, (16) 

Considered as a bialgebra, it has the following comultiplication 6~ and counit EA: 

This algebra has a determinant D given by [lo], 

where summations are over all permutations p of (1, . . . , n )  and the quantum signature is 

d P )  = n (-4-9. (4) 
I 4  

,m>P*I  

The determinant obeys [ 101: 
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The determinant is central, i.e. it commutes with the elements aik [ 101: 

aixD = Dark. 

Further, if D # 0, one extends the algebra by an element D-' which obeys [IO]: 

D D - I  = D - ~ D  = la .  

Next one defines the left and right quantum cofactor matrix Aij [lo]: 

where LT~ and U; denote the cyclic permutations, 

ui = {i, . . . , 1) U' = [ j ,  . . . , n )  I 

and the notation .? indicates that x is to be omited. Now one can show that [lo]: 

and obtain the left and right inverse [lo]: 

~ - 1  = D - ~ A  = AD-' .  

Thus, one can introduce the antipode in GL9(n) [lo]: 

yA(a.-)  V = 0 - l ~ ~ ~  = A , ~ D - ~ .  

Next we introduce a basis of GL,(n) which consists of monomials 

f = (a2l)" . . . ( u ~ , ~ - ~ ) ~ ~ ~ ~ - ~ ( u ] ~ ) ~ ~  . . . (a.,)"(a.-I,.)nn-l~n.. .(a12)nl2 = fj,@,: 

where i, j 5 , i  denote the sets [ti), [ p i j ] ,  [nil], respectively, t i ,  p i j ,  nij E Z+ and we have 
used the so-called normal ordering of the elements ajj. Namely, we first put the elements 
aij with i > j in lexicographic order, i.e. if i < k then ajj (i > j )  is before akc (k  > t) and 
a,i ( t  > i) is before ark ( t  > k) ;  then we put the elements aij; finally we put the elements 
ajj with i < j in antilexicographic order, i.e. if i > k then aij (i < j )  is before akt (k < t )  
and a,j ( t  < i) is before aik ( t  < k ) .  Note that the basis (13) also includes the unit element 
1~~ of dg when all ( t i ] ,  { p i j ] ,  { n j j )  are equal to zero, i.e. 

f - - - - 1  0.0.0 - 4. (14) 

We need the dual algebra of GL,(n).  This is the algebra U, = U,(sl(n)) @ U9(2), 
where U,(Z) is central in U, [Il l .  Let us denote the Chevalley generators of d ( n )  by i f j ,  
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X:, i 
the ’Chevalley’ generators o f  U = U,(sl(n)), with the algebra relations 

1,. . . ~ n - 1. Then we choose ki = qHJ2, k;’ = q - H f / z ,  X F ,  i = 1,. . . , n - 1 for 

kik, = kjki kik;’ = k;’ki = l y  k i X j f  qicijX:ki ( 1 5 4  

(xyxxj’ - [zl,x:x~x’ + x; (Xi *’-o ) - ( 1 5 4  

[X:. XT] = &j (k: - k;*) / h  (15b) 

[Xf, x;] = 0 l i  - j l  # 1 ( 1 5 4  
I i - j l = l  

where cij is the Cartan matrix of sZ(n), and the coalgebra relations 

where k;’ = ki ,  k; = k;’. Further, we denote the generator o f  2 by H and the generators 
of V,(2) by k = qHI2, k-’ = q-H/2. kk-l = k-’k = l ~ , .  The generators k ,  k-’ commute 
with the generators of U ,  and their coalgebra relations are as those of any kj. From now on 
we shall give most formulae only for the generators k i ,  X:, k ,  since the analogous formulae 
fork;’ ,  k-’ foUow trivially from those for ki, k ,  respectively. 

The bilinear form giving the duality between U, and A, is given by [ 1 1 1  

The pairing between arbibary elements of U, and f follows then from the properties of the 
duality pairing. All this is given in [ 1 1 1  and is not reproduced here since we shall not need 
these formulae, The pairing (17) is typically supplemented with 

( Y .  Id,) = E U z ( Y ) ,  (18) 

It is well known that the pairing provides the fundamental representation of U,: 

F(y) je  = (y,ajd Y = k i ,  X:, k .  (19) 

Of course, F ( k )  = q1/21,, where I,  is the unit n x n matrix. 

3. Representations of U, and U 

We begin by defining hvo actions of  the dual algebraU, on the basis (13) o f  A,. 

infinitesimal version of 
First we introduce the leji regular representation of U, which in the q = 1 case is the 

x ( Y )  M = Y-’ M Y, M 6 GL(n).  (20) 
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Explicitly, we define the action of U, as (cf (19)) 

where y denotes the generators of U, and y-' is symbolic notation, the possible pairs being 
given explicitly by 

(y, y - 1 )  = (k ; ,  k ; l )  cx:, -XF) ( k .  k -I ) .  (22) 

From (21) we find the explicit action of the generators of U,: 

The above is supplemented with the following action on the unit element of A,: 

(24) t n(ki)lA, = Id, a(xi )Id8 = o  T ( k ) l A ,  = Id,. 

In order to derive the action of x ( y )  on arbitrary elements of the basis (13). we use 
the twisted derivation rule consistent with the coproduct and the representation structure, 
namely, we take: x(y)p,b = n(dL$y))(p @ @), where && = U o Bus is the opposite 
coproduct (U is the permutation operator). Thus, we have 

n(ki)& = x(ki)P . r (ki) l lr  (=a) 
x(x ; )pS  = n(XF)p ' n(k;l)@ + tr(ki)(O. X(X')* (Zb) 
R(k)V$  = r(k)p ' . (=C) 

From now on we suppose that q is not a non-trivial root of unity. Applying the above 
rules one obtains 

where 

c. = q("-')/2[n]9 [nl, = (q" - q - " ) / A .  (27) 

Note that (24) and (23) are partial cases of (26) for n = 0 and n = 1, respectively (cf (14)). 
Analogously, we introduce the right nction (see also [12]) which in the classical case 

is the infinitesimal counterpart of 

X A ( Y ) M  = MY Y, M E GL(n).  (28) 
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Thus, we define the right action of U, as (cf (19)) 

where y denotes the generators of U,. 
From (29) we find the explicit right action of the generators of U,: 

By (26) and (33) we have defined the left and the right actions of U, on 'p. As in 
the classical case, the left and right actions commute, and as in [ 5 ]  we shall use the right 
action to reduce the left regular representation (which is highly reducible). In particular, we 
would like the right action to mimic some properties of a highest-weight module, i.e. the 
annihilation by the raising generators X: and scalar action by the (exponents of the) Cartan 
operators k i ,  k. In the classical case these properties are also called right covariance [5 ] .  
However, first we have to execute a change of basis using the q-analogue of the classical 
Gauss decomposition. For this we have to suppose that the principal minor determinants of 
M .  

= +)at.p(t). . .am,p(m)  = G(p)ap(l),l . . . a p ( m ) . m  m < n (35) 
PES, P€S. 
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are invertible; note that D ,  = D ,  D.-I = Ann. Thus, using (10) for i = e = n we can 
express, e.g. ann in terms of other elements: 

Further, for the ordered sets I = {i1 c . . . < ir] and J = 1: j l  < . . . c j r ] ,  let :; be the 
r-minor determinant with respect to rows Z and columns J .  such that 

Note that c;,:;: = Di. Then one has [13] ( i ,  j ,  e = 1 , .  . ., n )  

aie = x B i j Z j e  
j 

Bit = 0 for i < e ,  Zit = 0 for i > e ,  (which follows from the obvious extension of (37) to 
the case when Z (respectively, J )  is not ordered). Then Zij, i c j ,  may be regarded as a 
q-analogue of local coordinates of the flag manifold B\GL(n). 

DFJ1 Zit = DY1&:,';-le (38) I ... e-I  i Bie =!?I ... e 

For OUT purposes we need a refinement of this decomposition: 

(39) I .  e - t i  Bie = YieDte Yie = 61 . . . e  Dgl  Dee DeD;!, (Do E Ide) 

where Y j e ,  j 
G L ( n ) I D Z .  

e ,  may be rezarded as a q-analogue of local coordinates of the flag manifold 
. I .  
Clearly, we can replace the basis (13) of .A, with a basis in terms of Yit, i > e, Dc,  

Zit, i < !. (Note that Yii = Zit = 1+) We could have used also Du instead of  Dt ,  but 
this choice is more convenient since we shall impose D.  = D = 1.4, below. Thus, we 
consider formal power series: 

i.7. 

Now, let us impose right covariance [SI with respect to Xi', i.e. we require 

%'R(X:)V = 0. (41) 

a R ( X + ) ~ ~ = O  f o r J = { l ,  . . . , j } ,  VZ (42) 

x ~ ( X r ) D j  = 0 X R ( X T ) Y j e  0. (43) 

First we notice that 

from which we have 

On the other hand, XR(X?) acts non-trivially on ZIP. Thus, (41) simply means that our 
functions rp do not depend on Zj,. The functions obeying (41) are therefore 

rp = pj,*(Y21)*'' . . . (Yn,n-l)mn,"-'(D~)et . . . (4)'". (44) 
k Z . f i € Z +  
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Next, we impose right covariance with respect to ki and k ,  

RR(kj)(P = q"I2p 
RR(k)(P = qilZ9 

where ri and i are parameters to be specified below. On the other hand, using (3211, c) and 
(33~2, c), we have 

xR(kj)c{ = q " ~ / ~ ( i  

from which we have 

rrR(k)(: = q'I2C: for J = [ 1, . . . , j ] ,  V I  (46) 

and thus we obtain 

( 4 7 4  
(47b) 

Comparing right covariance conditions (45) with the direct calculations [48] we obtain 
ti = ri for i < n, E;=, j e j  = i .  This means that ri, i E Z and that there is no summation 
in e i ;  also. e. = (i - ir j ) /n.  

Thus, the reduced functions obeying (41) and (45) are 

where ê  = (i - 

on D,, = D: 

iri)/n. 
Next we would like to derive the U, action I on 9. First, we notice that U acts trivially 

n ( X f ) D  = 0 ~ ( k j ) D  = D ,  (50) 

Then we note that 

n(k)Dj = q -'/'Dj *(k)Yjt = Yjc (51) 

x ( k ) 9  = 4-'"9. (52) 

which implies 

Thus, the action of U involves only the parameters ri,  i < n, while the action of U,(2) 
involves only the parameter i. We can therefore. also from the representation theory 
standpoint, restrict consistently to the matrix quantum gmup SLq(n) ,  i.e. we set 

D = D-' = IA,. (53) 

Then the dual algebra is U = U&l(n)). This is justified as in the q = 1 case [SI, since for 
our considerations only the semisimple part of the algebra is important. (This would not be 
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possible for the multiparameter deformation of GL(n) [14,15], since D is not central there. 
Nevertheless, we expect most of the essential features of our apptoach to be preserved since 
the dual algebra can be transformed as a commutation algebra to the one-parameter U,, 
with the extra parameters entering only the co-algebra structure-'[ 111.) 

The reduced functions for the U action are, therefore, 

= @(F)(Dl)'(  . . . (DQ-])'"-' 

where F, 6 denote the variables Yil, i > e ,  Di, i < TI. Next we calculate 

( 5 6 4  

x (x ; )Y j ,  = -6,+l, jq-~"/2Yj-l ,e.  ( 5 6 4  

~(6,+, , ; -6 j j -6 j+, ,~+6;~)  y .  *(ki)+ = 4  
n(X:)Yje = -&jYj+l,t + Gieq'-6'~'+1/ZYt+~.rYje + &+i,e ( ~ - l Y j , t - ~  - Yc.t-iYje) (56b) 

These results have the important consequence that the degrees of the variables D j  are 
not changed by the action of U. For example, the parameters ri do characterize the action 
of U, i.e. we have obtained representations of U. We shall denote by Ci the representation 
space of the functions in (54) which have covariance properties (41). (45a); and we denote 
the representation acting in C? by 5~ (a renormalization of the explicit formulae may be 
done here to simplify things). To obtain this representation more explicitly one just applies 
(55) and (56) to the basis in'(54) using (25). In particular, we have 

n(ki)(Djj)" = q-n6;i/z(Dj)" n c Z  ( 5 7 4  
n(X:)(Dj)" = -&j&Yj+~,j(Dj)'' n E Z (57b) 
n(X6:)(Dj)" = 0 n E Z (574 
n(ki)(yjc)n = ql(s.+~.;-s,,-6.*~,1+6,r)(y. l e  )n E Z+ ( 5 8 4  
a(X?)(Yje)" = -Gjjc,(Yjt)"-'Yj+l,c 

+ &tql-n6i.~+1/2c n y t+l.t(Yjd" 

+6i+i.tcn (q - 'Y j , t - l (Y jeY1  - ~ t . t - 1 ~ ; )  n E Z+ (586) 

n(Xz7)(Y,c)" = -6,+1,;q-S'.'+1"/% n Y .  ,-l.e(YjcY-' n E Z+ (58~)  

Further, since the action of U is not affecting the degrees of Di, we introduce (as in 

@(F) (A@)(?) $(?. DI = ... = 4 - 1  = Id.). (60) 

We denote the representation space of @) by ti and the representation acting in tf by it?. 
Thus, the operator A acts from Ci  to C?. The properties of Ci follow from the intertwining 
requirement for A [SI: 

$A = &?. (61) 

[5]) the restricted functions @(F) by the formula which is prompted in (546): 
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4. Reducibilty and q-difference intertwining operators 

We have defined the representations 2; for ri E Z. Note, however, that we can consider 
the restricted functions @@) for arbitrary complex ri. We shall make these extension from 
now on, since this gives the same set of representations for Uq(sl(n)) as in the case q = 1. 

Now we make some statements which are true in the classical case [5] and will be 
illustrated below. For any i, j, such that 1 < i < j < n - 1, we define 

mjj Sri  + ...+ rj + j - i + 1. (62) 

Note that mi = mii = ri + 1, mi, = mi + + mi.  Note also that the possible choices of 
i, j are in one-to-one correspondence with the positive roots a = ai) = ai + . . . + aj of the 
root system of sl(n), the cases i = j = 1 . . . , n - 1 enumerating the simple roots CY! = aii, 
In general, mij E 8: for the representations 5?, while mij E Z for the representations x?. 
If mij < W for all possible i, j the representations 4, x? are irreducible. If mi, E PI 
for some i, j, the representations si, xi are reducible. The corresponding irreducible 
subrepresentations are still infinite-dimensional unless mi E N for all i = 1, . . . , n - 1. 
The representation spaces of the irreducible subrepresentations are invariant irreducible 
subspaces of our representation spaces. These invariant subspaces are spanned by functions 
depending on all variables Y j t ,  except when we have m, = m,+l = ... = m.-l = 1 
for some s E N. 1 < s < n - 1. In the latter case these functions depend only on the 
(s - 1)(2n - s)/2 variables Y,c with e < s, (the unrestricted subrepresentation functions 
still depend on DC with e < s). In particular, for s = 2 the restricted subrepresentation 
functions depend only on n - 1 variables Y j l .  The latter situation is also relatively simple in 
the q case since these variables are q-"muting: YjlYkl = qYkIyjI, j k. (Fors = 1 the 
irreducible subrepresentation is one dimensional and hence independence of any variables.) 

Furthermore, for mij E PI the representation si, x i ,  is partially equivalent to the 
representation &, respectively, with mi = r; + 1 being explicitly given by [5] 

for e # i - 1. i. j, j + 1 
for e =  i - 1 

-mc+l.j for e = i < j 
for e = j > i [ iF-1 f o r e = i =  j 
fore = j +  1 .  

These partial equivalences are realized by intertwining operators: 

m; = 

Zij : C? -+ Ci, 
Iij : ci ---f 

mij E N 
mij E N 

- 
i.e. one has 

The invariant irreducible subspace of 7?? (respectively, x i )  discussed above is the intersection 
of the kernels of all intertwining operators acting from Y?? (respectively, xi) .  When all mi E 
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N the invariant subspace is finite-dimensional with dimension n,,i,j,,-, mij/ ny:; t ! ,  and 
all finite-dimensional irreps of U,(d (n) )  can be obtained in this way. 

We now present a canonical procedure for the derivation of these intertwining operators 
following the q = 1 procedure of [51. By this procedure one should take as intertwiners 
(up to non-zero multiplicative constants) 

= P; ( ~ R ( x ; ) ,  . . . , ~ R ( x J )  

I; = P; (*R(x;)..  . . , ~ R ( x T ) )  

m = mij E N 

m = mij E N 

(6W 

(66b) 

where P; is a homogeneous polynomial in each of its ( j  - i + 1) variables of degree 
m. This polynomial gives a singular vector uij in a Verma module V"(') with the highest 
weight A(?) determined by i (cf [5]), i.e. 

ujj = P; (x;, . . .*x;) la "0 (67) 

where uo is the highest weight vector of V"('). In particular, in ,the case of simple roots, 
i.e. when mi = mij = ri + I E N, we have 

For the non-simple roots one should use the explicit expressions for the singular vectors 
of the Verma modules over U,(sl(n)) given in [16]. Implementing the above, one should 
be careful since l i ~ ( X ; )  is not preserving the reduced spaces Ct, e?, which is of course a 
prerequisite for (65), (66) and (68). 

5. The case of U,(sZ(3)) 

In this section we consider in more detail the case n = 3. We could have also started 
(following the chronology) with the case n = 2 involving functions of one variable [8]. 
However, though by a different method, this case was obtained in [9]. It can also be 
obtained by restricting the conshvction for the (complexification of the) Lorentz quantum 
algebra of [7] to one of its Uq(sl(2)) subalgebras. 

= Yzj, = Y ~ z ,  
{ = Y31. We note for future use the commutation relations between these coordinates: 

Let us now for n = 3 denote the coordinates on the flag manifold by 

s s = q ' 1 5 - u  sr=qrrl < c = q t r .  (6% 

The reduced functions for the U action are (cf (54)): 



It is easy to check that a ( k , ) ,  R ( X : )  satisfy (15). It is also clear that we can remove 
the inessential phases by setting 

As a :quence of the intertwining property (61) we obtain that @jne obey the same 
transformation rules U1) as @jnt.  i.e. (cf also (72)) we have 
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where K = t3 q ,  <, and the explicit action on $jne is defined by 

4853 

Of course, for q --z 1 we have 8x --z a, a / a K .  

In terms of the above operators the transformation rules (74) are written as 

Sr,,,>(k,)@(?) = q-r'/2TET:/zT;'/2$(?) (790) 

(796) 
112 -112 - 

? r L , r 2 ( W @ ( f i  = q-R/2T,T< T< @(Y) 
?r,,n(XT)@(?) = ( l /A)k~T;/2T~' /z  (q-"T ! < a  T T-' - q"T;'T;'T,)$(?) 

?, , ,n(Xl )@(?)  = ( l / h ) ~ ~ T ~ / Z T ~ l / Z ( q - " T ,  - q"T;') e(?) 

112 112 - ?p, ,n(XT)@(F)  = Tq $U') 

+q-"-lfi  I 5 ' I C <  T T'12T;l/2 @(?) 

- q"-' M< 56 Ti12T;'/2T;1 @( ?) 

?,,.n(x;)@(?) = -ijv~;/2~;'/2$(F) - A?~~~T;~/~T:/~T;~$(?) 

(79d 

(794  

(794 

(79B 

where fix = fi?. 
on monomials 

in three commuting variables x ,  y. z. Indeed, one can relate the non-commuting algebra 
C[c, q ,  <I  with the commuting algebra @ [ x ,  y,  z ]  by fixing an ordering prescription. 
However, such realization in commuting variables may be obtained much more directly 
as is done by other methods and for other purposes in [17]. In the present paper we are 
interested in the non-commutative case and we continue to work with the non-commuting 
variables e,  q? <. 

Now we can illustrate some of the general statements of the previous section. Let 
mz = r2 + 1 E N. It is clear that if e > m2, functions $ from (73) with pjLn,e = 0 form an 
invariant subspace, since 

(80) 

Note that it is possible to obtain a realization of the representation 

- I t w 1 2 [ j ]  
% ( , n ( X : ) @ j n r s  = -4 qVj- i ,n+l , rz  
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and all other operators in (74) either preserve or lower the index e .  The same is true for the 
functions 6. In particular, for m2 = 1 the functions in the invariant subspace do not depend 
on the variable q. In this case we have functions of two q-commuting variables <c = qc< 
which are much easier to handle that the general non-commutative case (69). 

The intertwining operator (68) for m2 E N is given as follows. First we calculate 

where e) = [n14!/[klq![n - kl,!, Em],! = [ml,[m - l lq .  ,. [1Iq. Thus, nR(X;) is not 
preserving the reduced space C,,,,2, and furthermore there is the additional variable (l:. 
Since we would like ZR(X;) to some power to map to another reduced space, this is only 
possible if the coefficients aSr vanish for s # r. This happens iff s = rz + 1 = m2. Thus 
we have (in terms of the representation parameters mi = ri + 1) 

4 

Comparing the powers of Di, we recover at once (63) for our situation, namely, m; = mlz 
and mi = -m2. We have thus shown (Mu) and (6%). Then (64b) and (65b) follow using 
(61). This intertwining operator has a kernel which is just the invariant subspace discussed 
above-it is obvious from the factor l / [ t  - m~], !  in (82) that aU monomials with e .c m2 
are mapped to zero. 

For the reshcted functions we have 

Thus, renormalizing (686) by q-""'/* we finally have 

Iz"' = (6?)T?))mz (84) 

For q = 1 this operator reduces to the known resuIt: IT = (&J"~ 151. 

find 
Let now m l  E W. In a similar way, though the calculations are more complicated, we 
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Comparing the powers of Dj we recover (63) for our situation, namely, mi = - m , ,  
m; = m i z .  Thus, we have shown that (64) and (65) hold. 

For the restricted functions we have 

Then, renormalizing (68b) we finally have 

For q = 1 this operator reduces to a known result: 2;' = (a, + q a f p  [51. 

[161) 

Finally, let us consider the case m = m12 = ml + m t  E N, first with m i ,  m2 6 N. In 
this case the intertwining operator is given by (66) and (67) with [ I S ] ,  formula (27) (cf also 

m 
P;; (x; ,  x;) = Ca,(x;)"-"(X;)m(x;)~ 

r=O 

Let us illustrate the resulting intertwining operator in the case m = 1. We then have, setting 
in (88) a = [ I  - ml], ,  

= [1 - m l l q n R ( x ; ) r R ( x ~ )  [ m i l q n R ( x z ) ~ R ( x ; ) .  (89) 

Then we can see at once the intertwining properties of T:? by calculating 

j - i  5nqe-i D;, -2 Dzm,-2 Lil&Iq6 1 j n LDml- iDmr- l  = q j + n - 2 - m ~  
TI26 5 rl 1 2 

+ q"-*[n],[e + m ~ ] 9 ~ j ~ n - 1 ~ C D ~ - z D ~ - 2 .  (90) 

Comparing the powers of Dj we recover (63) for OUT situation, namely, mi = -mz = mi- 1, 
2 -  -- ml = m 2 - 1 .  

For the restricted functions we have 

([I - ml l q n R ( X ; ) r R ( X ; )  + [ml lqnR(x;)nR (x;))'$jnt 

[ j I p [ ~ I p 6 j - i . ~ . e - i  + q n - 2 ~ n l , [ t  + m ~ l ~ $ j , ~ - ~ , t  
= qn-Z+j -mt  

= q-' (q-m'6$q6'I + ( l /h)6c(qm'T,  -q-'"'T;') (91) 

Rescaling (66b) we finally have 
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For q = 1 this operator is I;=' = + (ml i- $,)a, [53. 
Above we have assumed that ml,m2 N. However, after the proper choice of a in 

(88), (e.g. as made above in (89)) we can consider the singular vector (88) and the resulting 
intertwining operator also when ml andor m2 are positive integers. Of particular interest 
are the cases ml. m2 E Z+. In these cases the singular vector is reduced in four different 
ways (cf [16, formulae (33a-d)l. [le]). Accordingly, the intertwining operator becomes 
composite, i.e. it can be expressed as a composition of the intertwiners introduced so far 
as follows 

The four expressions were used to prove commutativity of the hexagon diagram of 
Uq(d(3,C))) [18]. This diagram involves six representations which are denoted by Vm. 
V&, V i ,  Vdg", V i  and V& in (29) of [18] and which in our notation are connected by the 
intertwiners in (93) as follows: 

Of these six representations only &,,,,, has a finite dimensional irreducible subspace iff 
mlmz > 0, the dimension being mlmzm/2 [IR]. If m, = 0. the intertwining operators with 
superscript m~ become the identity (since in these cases the intertwined spaces coincide) 

, and the compositions in (93), (94) are shortened to two terms in the cases (a,b,d) and to 
one term in the case (c), (respectively, for 1?12 = 0, two terms in the cases (n,b,c), one term 
in (d)). Such considerations are part of the multiplet classification given in [18]. 
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